Cohere
Chroma also provides a convenient wrapper around Cohere's embedding API. This embedding function runs remotely on Cohere’s servers, and requires an API key. You can get an API key by signing up for an account at Cohere.
Models | Input | Dimensionality | Context Size | |
---|---|---|---|---|
embed-english-v3.0 | English | 1024 | 512 (recommended) | |
embed-multilingual-v3.0 | Full List | 1024 | 512 (recommended) | |
embed-english-light-v3.0 | English | 384 | 512 (recommended) | |
embed-multilingual-light-v3.0 | Full List | 384 | 512 (recommended) | |
embed-english-v2.0 | English | 4096 | 512 (recommended) | |
embed-english-light-v2.0 | English | 1024 | 512 (recommended) | |
embed-multilingual-v2.0 | Full List | 768 | 512 (recommended) |
Basic Usage
Python
pip install cohere
from chromadb.utils import embedding_functions
embedder = embedding_functions.CohereEmbeddingFunction(
api_key="YOUR_API_KEY")
collection = client.create_collection(
name="cohere_ef",
embedding_function=embedder)
Javascript
yarn add cohere-ai
import { ChromaClient, CohereEmbeddingFunction } from 'chromadb'
const embedder = new CohereEmbeddingFunction({
apiKey: "YOUR_API_KEY"
})
const collection = await client.createCollection({
name: "cohere_ef",
embeddingFunction: embedder
})
Advanced Usage
Call directly
By passing the embedding function to a Collection, Chroma handles the embedding of documents and queries for you. However in some cases you may want to generate the embeddings outside and handle them yourself.
Python
embeddings = embedder(["document1","document2"])
# [[0.04565250128507614, 0.01611952856183052...], [0.030171213671565056, 0.007690359838306904...]]
Javascript
const embeddings = embedder.generate(["document1","document2"])
// [[0.04565250128507614, 0.01611952856183052...], [0.030171213671565056, 0.007690359838306904...]]
Using a different model
You can pass in an optional model_name
argument, which lets you choose which Cohere embeddings model to use. By default, Chroma uses large
model. You can see the available models under Get embeddings
section here.
Multilingual model example
Python
cohere_ef = embedding_functions.CohereEmbeddingFunction(
api_key="YOUR_API_KEY",
model_name="multilingual-22-12")
multilingual_texts = [ 'Hello from Cohere!', 'مرحبًا من كوهير!',
'Hallo von Cohere!', 'Bonjour de Cohere!',
'¡Hola desde Cohere!', 'Olá do Cohere!',
'Ciao da Cohere!', '您好,来自 Cohere!',
'कोहेरे से नमस्ते!' ]
cohere_ef(texts=multilingual_texts)
Javascript
import { CohereEmbeddingFunction } from 'chromadb'
const embedder = new CohereEmbeddingFunction("apiKey")
multilingual_texts = [ 'Hello from Cohere!', 'مرحبًا من كوهير!',
'Hallo von Cohere!', 'Bonjour de Cohere!',
'¡Hola desde Cohere!', 'Olá do Cohere!',
'Ciao da Cohere!', '您好,来自 Cohere!',
'कोहेरे से नमस्ते!' ]
const embeddings = embedder.generate(multilingual_texts)
For more information on multilingual model you can read here.